Solutions to tutorial exercises for stochastic processes

T1. (a) \Rightarrow : Suppose $\{\tau \leq t\} \in \mathcal{F}_{t}$ for all $t \geq 0$. We can write

$$
\{\tau<t\}=\bigcup_{\substack{s<t \\ s \in \mathbb{Q}}}\{\tau \leq s\} \in \mathcal{F}_{t}
$$

\Leftarrow : Suppose $\{\tau<t\} \in \mathcal{F}_{t}$ for all $t \geq 0$. In this case we have

$$
\{\tau \leq t\}=\bigcap_{\substack{s>t \\ s \in \mathbb{Q}}}\{\tau<s\}
$$

which is an element of \mathcal{F}_{s} for all $s>t$, so that

$$
\{\tau \leq t\} \in \bigcap_{\substack{s>t \\ s \in \mathbb{Q}}} \mathcal{F}_{s} .
$$

Since the filtration is right-continuous we conclude that $\{\tau \leq t\} \in \mathcal{F}_{t}$.
(b) Suppose τ_{n} is a sequence of stopping times. We have

$$
\left\{\sup _{n} \tau_{n} \leq t\right\}=\bigcap_{n}\left\{\tau_{n} \leq t\right\} \in \mathcal{F}_{t}
$$

and similarly

$$
\left\{\inf _{n} \tau_{n} \leq t\right\}=\bigcup_{n}\left\{\tau_{n} \leq t\right\} \in \mathcal{F}_{t}
$$

so that $\sup _{n} \tau_{n}$ and $\inf _{n} \tau_{n}$ are stopping times. For $\lim \sup _{n} \tau_{n}$ we can write

$$
\limsup _{n \rightarrow \infty} \tau_{n}=\inf _{n \geq 0} \sup _{k \geq n} \tau_{k}=: \inf _{n \geq 0} \sigma_{n}
$$

By the above observations σ_{n} is a stopping time and thus so is $\lim \sup _{n} \tau_{n}$. Similarly

$$
\liminf _{n \rightarrow \infty} \tau_{n}=\sup _{n \geq 0} \inf _{k \geq n} \tau_{k},
$$

is a stopping time. Finally if $\lim _{n \rightarrow \infty} \tau_{n}$ exists it is equal to $\lim _{\inf }^{n \rightarrow \infty}$ τ_{n}, so that it is a stopping time as well.

T2. (a) Firstly $\Omega \in \mathcal{F}_{\tau}$, since τ is a stopping time. Suppose $A \in \mathcal{F}_{\tau}$, then $A \cap\{\tau \leq t\} \in \mathcal{F}_{t}$ for all $t \geq 0$. Since \mathcal{F}_{t} is a σ-algebra it holds that

$$
A^{c} \cap\{\tau \leq t\}=(A \cap\{\tau \leq t\})^{c} \cap\{\tau \leq t\} \in \mathcal{F}_{t}
$$

so $A^{c} \in \mathcal{F}_{\tau}$. Lastly suppose $A_{1}, A_{2}, \cdots \in \mathcal{F}_{\tau}$. Then since \mathcal{F}_{t} is a σ-algebra we have

$$
\left(\bigcup_{i=1}^{\infty} A_{i}\right) \cap\{\tau \leq t\}=\bigcup_{i=1}^{\infty}\left(A_{i} \cap\{\tau \leq t\}\right) \in \mathcal{F}_{t} .
$$

So \mathcal{F}_{τ} is indeed a σ-algebra.
(b) Let $s \geq 0$. We have

$$
\{\tau \leq s\} \in \mathcal{F}_{\tau}
$$

since for any $t \geq 0$ it holds that

$$
\{\tau \leq s\} \cap\{\tau \leq t\}=\{\tau \leq s \wedge t\} \in \mathcal{F}_{s \wedge t} \subseteq \mathcal{F}_{t}
$$

since τ is a stopping time.
(c) Suppose $\tau_{1} \leq \tau_{2}$. Then $\left\{\tau_{2} \leq t\right\} \subseteq\left\{\tau_{1} \leq t\right\}$ for all $t \geq 0$. Suppose $A \in \mathcal{F}_{\tau_{1}}$ and let $t \geq 0$, then

$$
A \cap\left\{\tau_{2} \leq t\right\}=A \cap\left\{\tau_{1} \leq t\right\} \cap\left\{\tau_{2} \leq t\right\} \in \mathcal{F}_{t}
$$

since $=A \cap\left\{\tau_{1} \leq t\right\} \in \mathcal{F}_{t}$ and $\left\{\tau_{2} \leq t\right\} \in \mathcal{F}_{t}$. So $\mathcal{F}_{\tau_{1}} \subseteq \mathcal{F}_{\tau_{2}}$.
(d) Suppose $\tau_{n} \downarrow \tau$. Then by the argumentation in (b) we have $\mathcal{F}_{\tau} \subseteq \mathcal{F}_{\tau_{n}}$ for all n. So in particular $\mathcal{F}_{\tau} \subseteq \cap_{n} \mathcal{F}_{\tau_{n}}$. Now let $A \in \cap_{n} \mathcal{F}_{\tau_{n}}$. Then there exists some $N \in \mathbb{N}$ such that for all $n \geq N$ we have $A \cap\left\{\tau_{n} \leq t\right\} \in \mathcal{F}_{t}$. Since \mathcal{F}_{t} is a σ-algebra we find

$$
\mathcal{F}_{t} \ni \bigcap_{n=N}^{\infty} A \cap\left\{\tau_{n} \leq t\right\}=A \cap \bigcap_{n=N}^{\infty}\left\{\tau_{n} \leq t\right\}=A \cap\{\tau \leq t\},
$$

so that $A \in \mathcal{F}_{\tau}$. We conclude that $\mathcal{F}_{\tau}=\cap_{n} \mathcal{F}_{\tau_{n}}$.

T3. (a) Let $\tau_{1}=\inf \left\{s \geq 1 \mid B_{s}=0\right\}$ and let $\tau=\inf \left\{s \geq 0 \mid B_{s}=0\right\}$. Firstly we can write

$$
\left\{\tau_{1}(\omega) \leq t\right\}=\{\inf \{s \geq 1 \mid \omega(s)=0\} \leq t\}=\{\inf \{s \geq 0 \mid \omega(s+1)=0\}+1 \leq t\}
$$

so that

$$
\mathbb{1}\left\{\tau_{1} \leq t\right\}=\mathbb{1}\{\tau \leq t-1\} \circ \theta_{1} .
$$

Now we can calculate the distribution of τ_{1} using the Markov property:

$$
\begin{aligned}
\mathbb{P}^{0}\left(\tau_{1} \leq t\right) & =\mathbb{E}^{0}\left[\mathbb{1}_{\left\{\tau_{1} \leq t\right\}}\right]=\mathbb{E}^{0}\left[\mathbb{E}^{0}\left[\mathbb{1}_{\{\tau \leq t-1\}} \circ \theta_{1} \mid \mathcal{F}_{1}\right]\right]=\mathbb{E}^{0}\left[\mathbb{E}^{B_{1}}\left[\mathbb{1}_{\{\tau \leq t-1\}}\right]\right] \\
& =\int_{-\infty}^{\infty} p_{1}(0, x) \mathbb{P}^{x}(\tau \leq t-1) \mathrm{d} x
\end{aligned}
$$

where $p_{t}(a, b)=(2 \pi t)^{-1 / 2} \exp \left(\frac{-|a-b|^{2}}{2 t}\right)$. Using the distribution of τ we get

$$
\begin{aligned}
\mathbb{P}^{0}\left(\tau_{1} \leq t\right) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-x^{2}}{2}\right) \int_{0}^{t-1} \frac{|x|}{\sqrt{2 \pi y^{3}}} \exp \left(-\frac{x^{2}}{2 y}\right) \mathrm{d} y \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{0}^{t-1} y^{-3 / 2} \int_{0}^{\infty} x \exp \left(\frac{-(y+1) x^{2}}{2 y}\right) \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{\pi} \int_{0}^{t-1} \frac{1}{\sqrt{y}(y+1)} \mathrm{d} y=\frac{2}{\pi} \arctan (\sqrt{t-1}) .
\end{aligned}
$$

(b) Let $\tau_{2}=\sup \left\{s<1 \mid B_{s}=0\right\}$ and let again $\tau=\inf \left\{s \geq 0 \mid B_{s}=0\right\}$. We can write

$$
\begin{aligned}
\left\{\tau_{2}(\omega) \leq t\right\} & =\{\sup \{s<1 \mid \omega(s)=0\} \leq t\}=\{\inf \{s>t \mid \omega(s)=0\} \geq 1\} \\
& =\{\inf \{s>0 \mid \omega(s+t)=0\} \geq 1-t\}
\end{aligned}
$$

so that

$$
\mathbb{1}\left\{\tau_{2} \leq t\right\}=\mathbb{1}\{\tau \geq 1-t\} \circ \theta_{t} .
$$

We now again use the Markov property to calculate the distribution of τ_{2} :

$$
\begin{aligned}
\mathbb{P}^{0}\left(\tau_{2} \leq t\right) & =\mathbb{E}^{0}\left[\mathbb{1}_{\left\{\tau_{2} \leq t\right\}}\right]=\mathbb{E}^{0}\left[\mathbb{E}^{0}\left[\mathbb{1}_{\{\tau \geq 1-t\}} \circ \theta_{t} \mid \mathcal{F}_{t}\right]\right]=\mathbb{E}^{0}\left[\mathbb{E}^{B_{t}}\left[\mathbb{1}_{\{\tau \geq 1-t\}}\right]\right] \\
& =\int_{-\infty}^{\infty} p_{t}(0, x) \mathbb{P}^{x}(\tau \geq 1-t) \mathrm{d} x
\end{aligned}
$$

Using the distribution of τ we get

$$
\begin{aligned}
\mathbb{P}^{0}\left(\tau_{2} \leq t\right) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi t}} \exp \left(\frac{-x^{2}}{2 t}\right) \int_{1-t}^{\infty} \frac{|x|}{\sqrt{2 \pi y^{3}}} \exp \left(-\frac{x^{2}}{2 y}\right) \mathrm{d} y \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{1-t}^{\infty} \frac{1}{\sqrt{t y^{3}}} \int_{0}^{\infty} x \exp \left(\frac{-(y+t) x^{2}}{2 y t}\right) \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{\pi} \int_{1-t}^{\infty} \frac{y t}{\sqrt{t y^{3}}(y+t)} \mathrm{d} y=\frac{1}{\pi} \int_{1-t}^{\infty} \sqrt{\frac{(y+t)^{2}}{y t}} \frac{t}{(y+t)^{2}} \mathrm{~d} y
\end{aligned}
$$

We now use the change of variables $z:=t /(y+t)$ to find

$$
\mathbb{P}^{0}\left(\tau_{2} \leq t\right)=\int_{0}^{t} \frac{1}{\sqrt{y(1-y)}} \mathrm{d} y=\frac{2}{\pi} \arcsin (\sqrt{t})
$$

